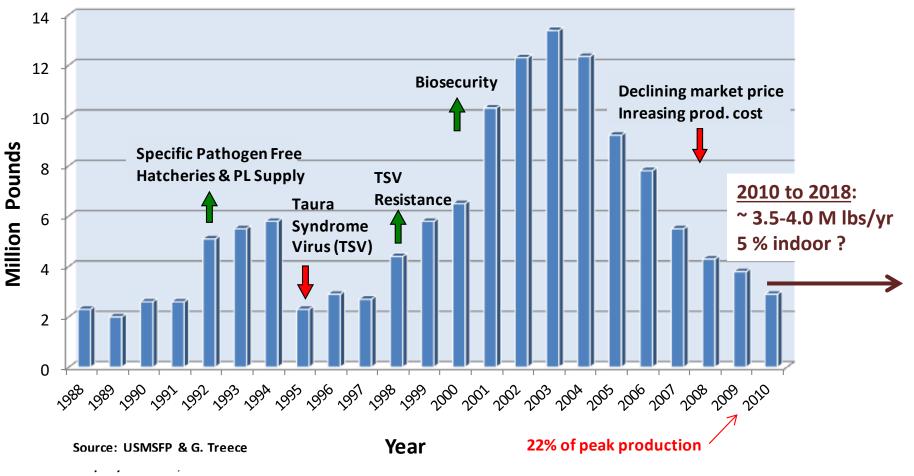
Perspectives on intensive, marine shrimp production using minimal-exchange indoor systems

- Opportunity and state of industry
- Production planning
- Culture tank and RAS design
- Biofloc technology
- Clear-water technology

Pacific white shrimp (Penaeus vannamei)

Douglas H. Ernst, Ph.D. CTO, Planet Shrimp Inc., Ontario, Canada

Indoor Shrimp Farming Workshop Kentucky State University, Sept 14-15, 2018 © Douglas H. Ernst (2018)



U.S. & Canada Shrimp Market

U.S. Farmed Shrimp Production 1988 - 2018

© DH Ernst (2018)

Status of indoor shrimp production industry in U.S. and Canada

A history of failures for small and large indoor shrimp facilities ...

The indoor farmed shrimp business: fascinating, frustrating Global Aquaculture Advocate, November 2016 www.aquaculturealliance.org/advocate/the-indoor-farmed-shrimp-business-fascinating-frustrating/

"We quit raising shrimp because we found it wasn't profitable. It cost too much to raise the shrimp indoors, considering the quantity of production."

"We have fought and fought the survival rate in the shrimp business for two and a half years and it has won every time."

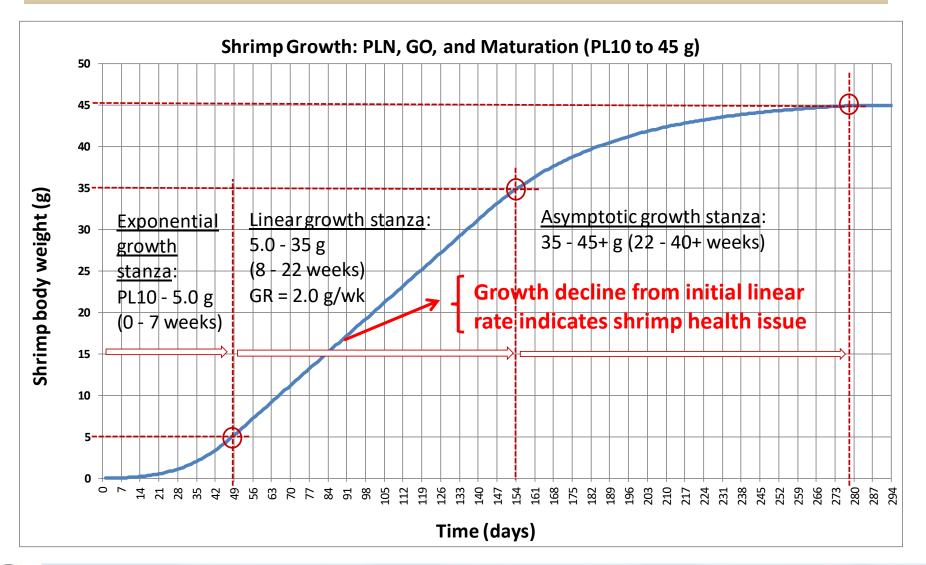
"At the end of the day, it was definitely devastating to see populations completely crash."

Shrimp Farm Design Procedure

Design stage	Objectives
Production plan	Target shrimp production (kg/week)
Production intensity	Target harvest density (kg/m3)
	Stocking and harvest cycles, culture periods
↓	Production staging: PL nursery> Growout
Facility size	Culture volumes for biomass & density levels
Water reuse intensity	System water exchange (%/day)
RAS design	System type & required water treatment
	Biofloc, hybrid, and clear water RAS
Infrastructure design	Infrastructure, buildings, utilities, personnel
Enterprise budgets	Net costs & revenues

Shrimp production plan: For facility design <u>and</u> production management

Shrimp survival, growth, and feeding


Date	Shrimp age (day)	Mean weight (g)	Growth rate (g/wk)	Specific growth rate (%/d)	FCR (kg FD /	Specific feeding rate (%bw/d)	(%)	Shrimp pop. no.	(KQ)	Feed app rate (kg/day)	Feed type

Shrimp growth objectives (for example):

- ✓ Stock PL10 at 0.0025 g
- ✓ 1.0 g in 4 5 weeks
- ✓ 5.0 g in 7 weeks
- ✓ 1.5 2.5 g/wk to harvest (e.g. 30 g at 20 weeks at 2.0 g/wk)

Production plan: Shrimp growth from PL10 to harvest

Feed loading and metabolism: Oxygen consumption & Metabolite excretion

Stoichiometry of feed metabolism (example values)

Metabolic ratios in relation to feed consumption				
Oxygen / feed (g O2 / g feed)	0.450	02		
Carbon dioxide / feed (g CO2 / g feed)	0.500	CO2 (RQ x 1 mol CO2 per mol O2)		
Total ammonia nitrogen / feed (g N / g feed)	0.030	Total ammonia nitrogen (TAN)		
Phosphate / feed (g PO4-P / g feed)	0.005	Ortho phosphate (PO4-P)		
Particulate solids / feed (g PS / g feed)	0.350	Dry weight solids		

Used for "mass balances" in water treatment design

- Oxygen consumption and supply
- Carbon dioxide production and removal
- Ammonia production and nitrification \rightarrow Nitrate denitrification
- Particulate solids production and removal

Feed loading and metabolism: Example application to Nitrogen cycle

Nitrifying bacteria production and inoculation (new PLN water)

- Shrimp population: 100,000
- Shrimp mean weight: 0.01 g
- Feeding rate: 40 % body wt./day
- Feed app rate: 400 g feed / day
- Ammonia loading rate: 12 g TAN/day
- Nitrifying bacteria production: 12 g TAN/day \rightarrow 46 g/day for NH4Cl application

Nitrate denitrification reactor design

- Shrimp population: 100,000
- Shrimp mean weight: 30 g
- Feeding rate: 1.25 % body wt./day
- Feed app rate: 37.5 kg feed / day
- Nitrate loading rate: 1125 g NO3/day → DNR reactor design

System type: Biofloc & Clear-Water Technologies

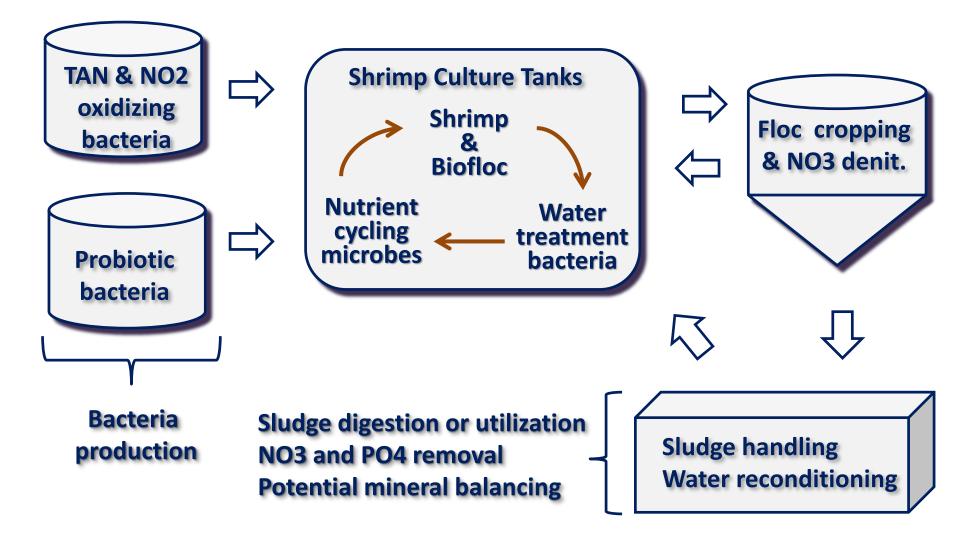
Continuum of water quality management methods

Higher exch. recirculating biofloc

- Shrimp tank aeration
- Shrimp tank heating
- Biofloc cropping (clarifiers)

For example: WER = 100 days Lower exch. recirculating biofloc

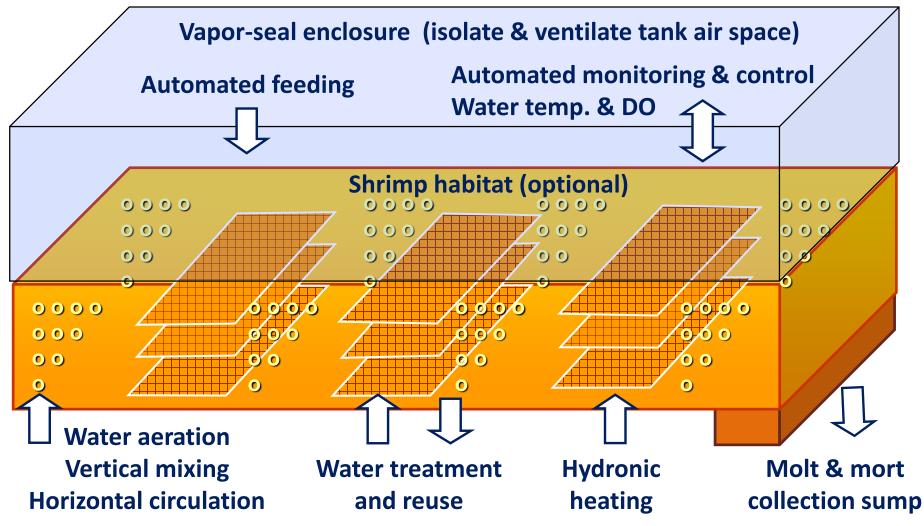
Plus:


- Nitrate denitrification
- Solids dewatering
- Mineral balancing

For example: WER = 300 days Recirculating clear-water (no biofloc)

- Solids filtration, dewatering
- Biofiltration (MBBR)
- Foam fractionation
- CO2 stripping
- Oxygenation, ozonation
- UV disinfection
- Nitrate denitrification

Biofloc technology: System design



© DH Ernst (2018)

Biofloc technology: Shrimp tank components

Circular tank or D-Ended raceway with central divider

Biofloc Aeration: Diffusers vs. Nozzles

Nozzle advantages:

- No maintenance
- Biofloc particle shear
- Horizontal water circulation
- Small bubble size → High surface area
- High air/water ratio → CO2 degas

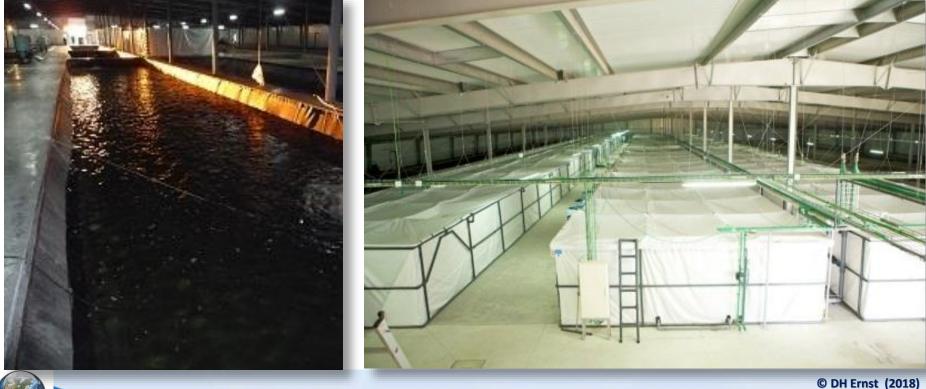
Biofloc Tech: NaturalShrimp (TX)

© DH Ernst (2018)

Biofloc Tech: NaturalShrimp (TX)

- Shrimp tank air enclosures
- Continuous biofloc cropping
- Continuous denitrification
- Automated M&C (YSI 5200)
 - 24/7 feed application
 - Water heating
 - Dissolved oxygen

Biofloc Tech: NaturalShrimp (TX)



Biofloc Tech: GambaNatural (Spain)

Biofloc Tech: Florida Organic Aquaculture

Florida Organic Aquaculture

- <u>Building</u>: ¼ mile long, 182,000 ft2,
 4.5 million gal
- <u>D-ended raceways</u>: 300' x 30' x 5' deep, central partition, sand bag walls, HDPE liner

From Les Knoesen, Ithuba Shrimp Farm

Biofloc Tech: Ithuba Shrimp Farm (FL)

Ithuba Shrimp Farm (Fellsmere, Florida) Les Knoesen (lesknoesen@gmail.com, +1-561-319-1817, ithubashrimp.com)

Barn: 160'x 90' – 14 000 sq. ft. <u>D-ended raceways</u>: 8 RWs, 64'x16'x4' deep, 25,000 gal, central partition, wood and sand bag walls, HDPE liner <u>Production</u>: 2500 lbs/months

Biofloc Tech: Ithuba Shrimp Farm (FL)

Sludge removal:

- 0.25% 0.50 %/day
- Start 60 days after stocking
- Water use ~ 300 days

Back to My Experience: Biofloc + Shrimp = Vibrio

- <u>Build farm, grow shrimp (2005 2007, NaturalShrimp, TX)</u>. Studied the literature, built a farm, commenced production at target harvest 10 kg/m3. Achieved good results.
- 2. <u>Declining performance</u>. At about 12 18 months of continuous production, started to see (1) declining shrimp growth and survival and (2) periodic, sudden, catastrophic mortality events (e.g. 10 %/day for 10 days)
- 3. <u>Seeking causes and solutions</u>. Completed histopathology and PCR. Tissue damage consistent with Vibriosis. *Vibrio parahaemolyticus* isolated and identified. Vibrio considered to be an opportunistic pathogen. Look for primary stressor.

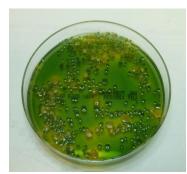
My Experience: Biofloc + Shrimp = Vibrio

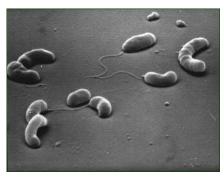
- 4. <u>Confusion</u>. Primary stressors not found. Multiple shrimp biofloc presentations at aquaculture conferences, but nobody discussing Vibrio bacteria and related production issues.
- 5. <u>Enlightenment</u>. Published studies are non-continuous production. Therefore, effectively disinfecting between production runs. Lack of reporting for failed studies. Production issues by others in commercial industry also due to Vibrio bacteria?
- 6. <u>Conclusions</u>. High shrimp density by itself is a trigger for Vibrio virulence. Need to use lower shrimp densities. Or better shrimp genetics? Also use rotational disinfection of water and biofilms to control internal development of virulent Vibrio strains.

Vibrio: Ecology and Virulence

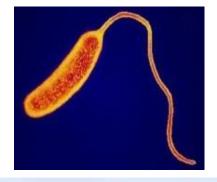
Vibrio ecology & virulence

- Non-excludable pathogen: Brought in with every PL reception
- Fast doubling time (30 min) → Population spikes
 - \rightarrow Evolution of virulence within facility


- Virulence triggers:
- Quorum sensing:
- Virulence expression:


High shrimp density (as well as poor WQ, stress, etc.) Latent \rightarrow virulent switching for whole populations

n: Chitinase & protease excretion → Shrimp mortality Transmission via water & cannibalism of dead shrimp


Some pathogenic species: V. parahaemolyticus, V. vulnificus, V. alginolyticus, Vibrio harveyi

Vibrio colonies on TCBS agar

Vibrio electron micrograph

© DH Ernst (2018)

Biofloc Technology: Three Key Considerations

1. Effective aeration and water mixing

Adequate O2 supply and CO2 removal (>= 70 – 80 % DO sat.)

2. Nitrogen cycle

- Control ammonia & nitrite w/ adequate nitrifying bacteria populations
- Avoid use of carbon addition to control ammonia (by HB uptake) (occurs at C/N Ratio > 12 – 15, e.g. CNR for 35% protein feed = 8.9)
- Control nitrate levels by water exchange, denitrification, or IMTA (e.g. < 50 mg N/L for 8 ppt salinity, < 100 mg N/L for 15 ppt salinity)</p>

Biofloc Technology: Three Key Considerations

3. Proactive Vibrio control methods

- Max shrimp density < 5 6 kg/m3 (anyone higher?)
- Probiotic bacteria apps for water and feed
- Shrimp feed immunostimulants
- Vibrio resistant shrimp genetics
- Rotational water and biofilm disinfection
- New/recond. biofloc water for new production lots
- Tank hygiene: Remove molts & morts

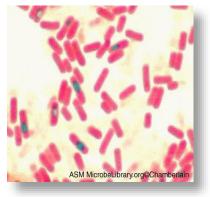
Control of Vibrio: Probiotic Bacteria

Action of probiotic bacteria

- Competitive exclusion
- Anti-bacterial compounds
- Quorum sensing disruption

Common probiotic species:

- Bacillus spp.
- Lactobacillus spp.
- Pedioccous spp.
- Enterococcus spp.



Bacillus production in fermentation reactors

- Brackish water, sugar, heaters, airlocks
- Add to shrimp culture water at high rates

Bacillus plating

Bacillus bacteria

Biofloc Systems: Application of "Symbiotics"

Probiotics - Carbohydrates - Fermentation - Symbiotics

Symbiotics

- A relatively new management tool in global shrimp farming (Asia and Latin America)
- Used to stabilize water quality and ecology (desired algal species, beneficial bacteria, micro-organisms)
- Used to control Vibriosis and other diseases

From: David Kawahigashi, 2018 Vannamei 101, Thailand

Biofloc technology: Symbiotics Prep

Preparation of activated carbohydrate-probiotic solution Apply to shrimp production, maturation, and larval rearing

(Example dry weight dosage: 5.0 ppm = 5.0 g per m3 = 100 mL per m3)

Fermented Rice	Bran Formula
Real Section	
Ingredients	Amounts
Rice bran (12-20% fat or lipids)	1 kilogram
Seawater (sterilized)	10–20 liters
Enzyme / probiotic	5-10 grams or ml
Buffer – Na2(HO3) or CaCO3	5% or 50 grams per kilo RB

From: David Kawahigashi, 2018 Vannamei 101, Thailand

Biofloc Technology: Application of Symbiotics

Countries using symbiotics:
Worldwide, see variable use of:
 Aerobic or fermentative production of particulate carbon + probiotic solution
· Carbon courses. Dies bron

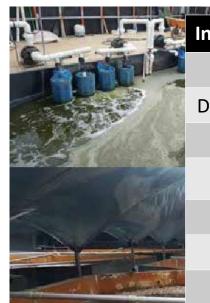
• Carbon sources: Rice bran, soy, sweet potato, cassava, etc.

> From: David Kawahigashi, 2018 Vannamei 101, Thailand

Countries using symbiotics	Level of use (%)
Brazil	60%
Ecuador	20%
Belize	100%
Mexico	30%
Korea	70%
(indoor farms)	
Thailand	20%
Vietnam	5%
Indonesia	5%
Philippines	1%
China	1%
India	70%
Malaysia	5%

© DH Ernst (2018)

Symbiotic BFT Sinaloa, México June 2018


Harvest density 4 kg / m2

From: David Kawahigashi, 2018 Vannamei 101, Thailand

- 2,000 m2 x 1.2 m x 8 raceways
- Densidad de siembra: 250 PL12/m2
- Sinbiótica: arroz fermentado
- 4 kilos por m2 cosecha (antes 1-2 kg/m2)
- Tamaño: 16-18 gramos en 85 DOC
- 85% supervivencia promedio

	Crecimiento	KonaBaySPF
	DOCengorda	63días
10/2 IS	Densidadsiembra	150PL12(.2gr)
	Árearaceway	2,000m2(lined)
	Tamaño	22gramos
	ADGengorda	.34

Symbiotic Biofloc Technology: South Korea

ndoorRaceway	AntesFRB	DespuésFRB	Isla Ganghwa
Supervivencia	45%	71%	
Densidadsiembra	220/m2	300/m2	CALIFORNIA
Pesocosecha	19gramos	20gramos	
Kilos/m2	1.8kilos	4.2kilos	
Biomasatotal	3,300kilos	7,600kg	
Díasdecultivo	167días	118días	
FCR	1.6	1.4	

Isla Jeju Lenguado a vannamei Camarón vivo => \$30-40/kilo 2 ciclos al año; pre-cría 30 doc 600 m2 raceways x 3 por granja 4-6 kilos/m2 por ciclo Casi cero recambio / simbióticas

From: David Kawahigashi, 2018 Vannamei 101, Thailand

Back to my experience:

Is clear-water shrimp culture a viable option ?

Biofloc Advantages

- Relatively simple operation
- Relatively low facility construction and operation costs

Biofloc Disadvantages

- Max commercial shrimp density: 5 6 kg/m3 (?)
- Disinfect harmful bacteria → Impact beneficial bacteria

Shrimp Production in Clear Water

Clear-Water Advantages

- Can see shrimp crops, better population tracking
- Continuous water disinfection and suppression of Vibrio
- Higher commercial production densities

Clear-Water Disadvantages

- Higher facility construction costs
- Increased system operation and management complexity

My first study: Shrimp production in clear water

A break from conventional wisdom: Convert biofloc to clear-water

© DH Ernst (2018)

Shrimp Production in Clear Water

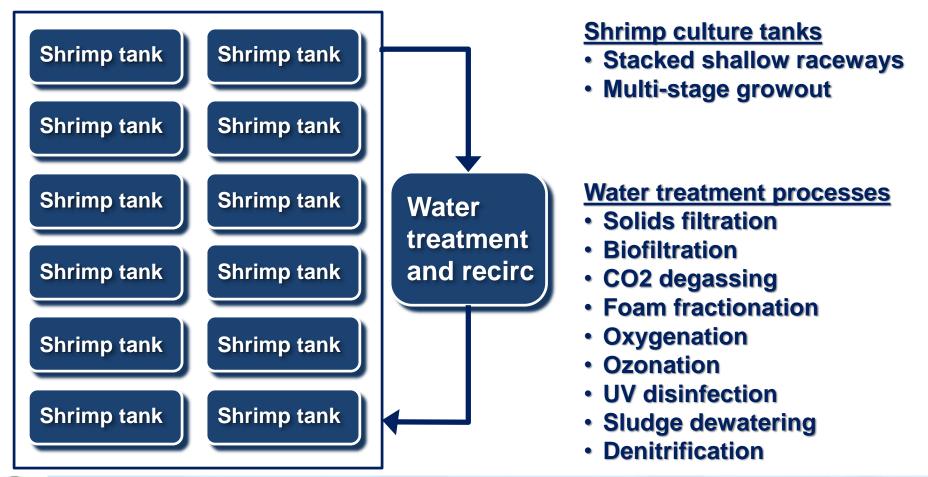
Natural Shrimp La Coste, TX 2011

Clear-Water System Results

- Higher sustainable shrimp densities
- More consistent production
- Improved growth, survival, FCR

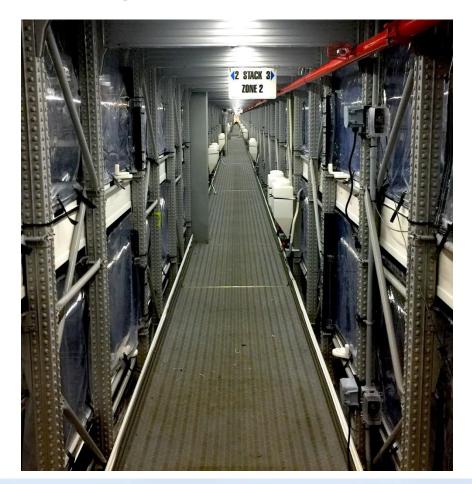
Shrimp Production in Clear Water

Natural Shrimp, La Coste, TX (2012)

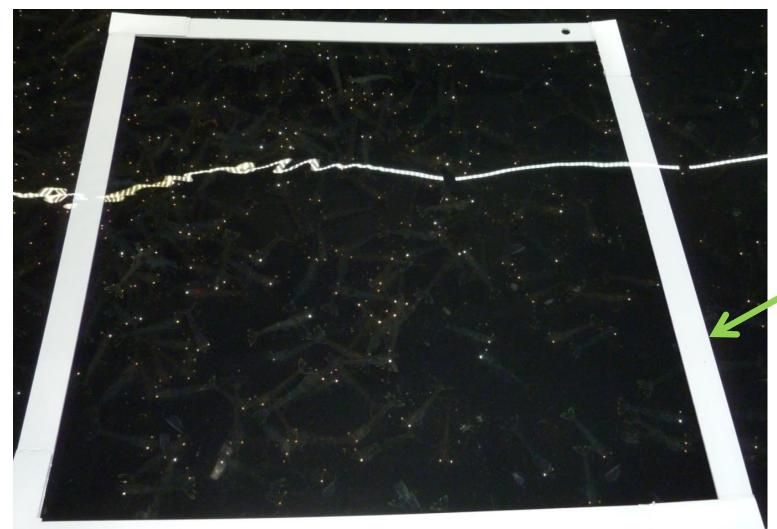

Repurposed warehouses: Four buildings at 65,000 ft2 each

© DH Ernst (2018)

Minimal-Exchange Recirculating Aquaculture Systems



Stacked Raceway Shrimp Culture Units



Shrimp Tank Access Corridors

© DH Ernst (2018)

Shrimp in Shallow Raceways

1.0 m2 floating frame

Shrimp Harvesting Started June 2018

